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Abstract—For a wireless sensor network (WSN) with randomly
deployed sensors, the performance of the counting rule, where the
fusion center employs the total number of detections reported by
local sensors for hypothesis testing, is investigated. It is assumed
that the signal power decays as a function of the distance from
the target. For both the case where the total number of sensors is
known and the wireless channels are lossless, and the case where
the number of sensors is random and the wireless channels have
nonnegligible error rates, the exact system level probability of
detection is derived analytically. Some approximation methods
are also proposed to attain an accurate estimate of the probability
of detection, while at the same time to reduce the computation
load significantly. To obtain a better system level detection perfor-
mance, the local sensor level decision threshold is determined such
that it maximizes the system level deflection coefficient.

Index Terms—Counting rule, decision fusion, distributed detec-
tion, wireless sensor networks.

I. INTRODUCTION

DUE to their great potential in various applications, such
as battlefield surveillance, security, traffic, and envi-

ronmental monitoring, wireless sensor networks (WSNs)
have attracted significant attention. Many aspects of WSNs,
including routing protocols, network structures, distributed
data compression and transmission, and collaborative signal
processing, have recently been investigated and covered in
the literature [1], [2]. In this paper, we focus on distributed
detection, a fundamental task that a WSN needs to accomplish.
There are already numerous publications on the conventional
distributed detection and decision fusion problem. In [3], the
optimum decision fusion rule has been obtained under the
conditional independence assumption. Decision fusion with
correlated observations has been studied in [4]–[6]. Many
papers focused on the problem of distributed detection with
constrained system resources [7]–[10]. Specifically, these pub-
lications have proposed solutions to optimal bit allocation (or
sensor selection) given a communication constraint.

However, in most of these publications, it has been assumed
that the local sensors’ detection performances, namely either
the local sensors’ signal-to-noise ratios (SNRs) or their prob-
abilities of detection and false alarm, are known to the fusion
center. For a dynamic target and a WSN with passive sensors, it
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is very difficult to estimate local sensors’ performances via ex-
periments because these performances are time-varying as the
target traverses the wireless sensor field. For a large WSN con-
sists of densely deployed low-cost and low-power sensors, in
our previous work [11], [12], we have proposed a counting rule
that uses the total number of detections (“1”s) transmitted from
local sensors as the fusion statistic. We have assumed that ei-
ther the total number of sensors in the region of interest (ROI)
[11] or its expected value [12] is very large, so that performance
evaluation based on the central limit theorem (CLT) can be car-
ried out. However, the assumption of a large number of sensors
is not always true. In [13], a saddlepoint approximation tech-
nique has been used to provide accurate estimates of the error
probabilities for the distributed detection problem, even for a
system with a small number of sensors. However, the saddle-
point approximation technique works only for the approxima-
tion of the density or tail probability of the sum of independent
and identically distributed (i.i.d.) random variables (RVs). It is
not applicable to the problem formulated in this paper, where
under hypothesis , the test statistic is the sum of detections
reported by local sensors, which are not i.i.d. Another assump-
tion we have made in [11] and [12] was that the ROI is very large
and the signal power decays very fast as the distance from the
target increases, so that the system level detection performance
was taken as approximately invariant to the target’s location.
Here we relax both of the above mentioned assumptions made
in our previous work, derive the exact analytical expression for
the detection performance, and propose some approximations
via Binomial distributions and Demoivre-Laplace approxima-
tion, which require much less computation load and yet yield
fairly accurate results. Furthermore, we investigate the detec-
tion performance for a more realistic scenario where the total
number of sensors is random and the wireless channels between
sensors and the fusion center are noisy.

In Section II, basic assumptions regarding the WSN are made
and the signal decay model is introduced. In Section III, for
a WSN with a known number of sensors and ideal commu-
nication channels between sensors and the fusion center, the
system level detection performance is derived analytically. Sev-
eral approximations to the exact system performance are also
proposed, whose accuracies are compared in terms of the total
variation distance (TVD). In Section IV, the assumptions of
known number of sensors and perfect communication channels
are relaxed. The number of sensors is assumed either to be a
Binomial RV or a Poisson RV, and the noisy wireless channels
are modeled as independent binary symmetric channels (BSCs).
The system level detection performance and its approximations
are derived. The problem of designing the local sensor level

1053-587X/$25.00 © 2008 IEEE

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on May 19, 2009 at 06:22 from IEEE Xplore.  Restrictions apply.



340 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

Fig. 1. A sensor deployment example.

threshold is investigated in Section V. Concluding remarks are
provided in Section VI.

II. PROBLEM FORMULATION

As shown in Fig. 1, a total of sensors are randomly de-
ployed in the ROI, which is a square with area . The loca-
tions of sensors are unknown to the WSN, and they are i.i.d.
and follow a uniform distribution in the ROI:

otherwise
(1)

for , where are the coordinates of sensor
. The location of the target, represented by its coordinates

, is independent of the positions of sensors, and follows
the same uniform distribution within the ROI as that described
in (1).

We assume that the signal power emitted by the target decays
isotropically as a function of the distance

(2)

where is the signal power measured at sensor , and is the
Euclidean distance between the target and local sensor

(3)

and function models how signal power decays as the dis-
tance from the target increases.

We assume that noises at the local sensors are i.i.d. and
follow a certain distribution. All the sensors use an identical
local threshold for a likelihood ratio test, and to obtain a local
decision. Under hypothesis (target presence), the probability
of detection at sensor is a function of its receiver’s SNR, which
is a function of the signal strength at a reference distance

, the distance from the target, and the threshold . We denote
it as , or .
Under hypothesis (target absence), each sensor has the same
probability of false alarm, and we denote it as . Note that
the detection performance analysis technique proposed in this

paper is quite general, and its application is not restricted to a
specific signal decay model or a specific noise model.

In the examples that we provide later in this paper, we used
the following :

(4)

where is the signal power measured at a reference distance
is the signal decay exponent. By adopting the model de-

scribed in (4), we prevent the receiver amplifier from saturation
when the target is very close to the sensor. In the examples, we
set and . We do not specify the type of the pas-
sive sensors and the power decay model of (4) is quite general.
For example, for a spherical acoustic wave radiated by a simple
source [14], the signal power decays at a rate inversely propor-
tional to the square of the distance.

In the examples, we also assume that at the local sensors,
the noises are additive, i.i.d., and follow the standard Gaussian
distribution:

(5)

where is the noise at the th sensor. For a local sensor , the
binary hypothesis testing problem is

(6)

where is the received signal, is the signal amplitude, which
is

(7)

The threshold and the false alarm rate satisfy the following
relationship:

(8)

where is the complementary distribution function of the
standard Gaussian. The probability of detection at local sensor

is, therefore

(9)

III. KNOWN NUMBER OF SENSORS AND PERFECT CHANNELS

In this section, we assume that the total number of sensors
is known. Further, the wireless channels between the sensors

and the fusion center are assumed to be perfect, with negligible
error rates. The results derived in this section will form the basis
for the more general results that we will obtain in the next sec-
tion.

A. Decision Fusion

We denote the binary data from local sensor as .
takes the value 1 when there is a detection; otherwise, it takes

the value 0. Based on local decisions transmitted from sensors,
the fusion center makes a final decision about a target’s presence
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or absence. For a binary decision fusion problem, the implemen-
tation of the optimal Chair-Varshney fusion rule [3] requires the
knowledge of and .

As long as the threshold is known, the probability of false
alarm at each sensor is known , which can be de-
rived from the probability density function (pdf) of the sensor
noise. However, at each sensor, it is very difficult to calculate

since it is determined by each sensor’s distance to the target
and the signal power emitted by the target . Without the

knowledge of s, the fusion center is forced to treat detections
from every sensor equally. An intuitive choice is to use the total
number of “1”s as a statistic. As proposed in [11], the counting
rule makes a system level decision by first counting the number
of detections made by local sensors and then comparing it with
a threshold

(10)

B. Exact Performance Analysis

In this section, we derive the system performance measures
of the counting rule, namely the probability of false alarm
and probability of detection at the fusion center.

1) Calculation of : At the fusion center, the probability
of false alarm is

(11)

Obviously, under hypothesis , the total number of detections
follows a Binomial distribution. For

a given threshold , the false alarm rate can be calculated as
follows:

(12)

2) Calculation of : Under hypothesis s are not in-
dependent of each other, since they are all dependent on the
target’s coordinates , which are RVs. As a result, the
distribution of can not be obtained by the sad-
dlepoint approximation technique proposed in [13], since it re-
quires s be i.i.d. We need a new method to derive the distribu-
tion of .

In Section II, we have assumed that the noises at local sen-
sors are i.i.d. and the locations of local sensors are i.i.d. Based
on these assumptions, we show that under hypothesis and
conditioned on the target’s location follows a Bino-
mial distribution. This is summarized in the following theorem.

Theorem 1:

Binomial (13)

where

(14)

Proof: See Appendix I.
According to Theorem 1, we have the closed-form solution

for the probability mass function (pmf) of

(15)

and it is straightforward to attain the pmf of

(16)

and the system level probability of detection is, therefore

(17)

C. Performance Evaluation via Approximations

In the previous subsection, we have derived the exact formula
to evaluate the system detection performance, namely (16) and
(17), which involve the computationally intensive fourfold inte-
gration. In this section, some approximation methods are pro-
posed to evaluate the performance, which require much less
computation load than the exact evaluation of .

Under hypothesis , if sensors’ locations , and
the target’s location are known, then s are indepen-
dent Bernoulli RVs, and the probability of success for is

, which is a constant. As a result,
is the sum of independent Bernoulli RVs, and its distribution
is often called Poisson Binomial distribution [15], which has a
very complicated structure if the s are nonidentical. Many
publications have addressed the problem of approximating
Poisson Binomial distribution by either a Poisson or a Binomial
distribution [15]–[18].

However, in this paper, under hypothesis does not
follow a Poisson Binomial distribution, since sensors’ locations

, and the target’s location are unknown, and s
are dependent on each other. Nevertheless, it is still interesting
to find approximations of the distribution of , based on Bi-
nomial or Poisson distribution. Through experiments, we have
found that the Poisson distribution is a poor approximation for
the distribution of , and we do not discuss it here.

1) Binomial I Approximation: Inspired by the fact that condi-
tioned on is a Binomial distributed RV, here we
use a Binomial distribution to approximate the distribu-
tion of . The parameter of the Binomial distribution is
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chosen such that its mean matches the mean of , namely
, where is the expected value of

(18)

Again, the evaluation of requires a fourfold integration. How-
ever, given and is only a function of

. As a result, once the distribution of is known,
the evaluation of is reduced to a single-fold integration over

, instead of a fourfold integration. In [19], we have derived the
distribution of and we state it in the following theorem.

Theorem 2: Assuming a local sensor’s two coordinates
and the target’s two coordinates, namely , and
are i.i.d. and follow a uniform distribution within the interval

, the pdf of the square of their distance is

otherwise
(19)

where

Proof: See [19].
Given , the average can be easily calculated as fol-

lows:

(20)

2) Binomial II Approximation: The Binomial I approxima-
tion method only matches the mean of . It will be of in-
terest to study the approximation that matches both the mean
and variance of . We derive the variance of and
its bounds, and provide them in Proposition 1.

Proposition 1: The variance of is

(21)

which satisfies the following inequality

(22)

where

(23)

Proof: See Appendix II.
From (21), it is clear that the evaluation of , and

hence that of requires a fourfold integration. Both

the calculations of lower and upper bounds of re-
quire only a single-fold integration. However, experiments show
that these bounds, especially the upper bound, are not very tight.
As a result, we still need to calculate the true variance of
through a fourfold integration. Similar to the method proposed
in [18], matching a Binomial RV’s mean and vari-
ance to and respectively, we
have

(24)

We name this approximation the Binomial II approximation.
Note that since according to Proposition 1

it can be shown that .
3) DeMoivre-Laplace Approximation: According to

DeMoivre-Laplace Theorem [20], if ,
then

As a result, when is large, the pmf of a Binomial
distribution can be approximated by the samples of a Gaussian
pdf, whose mean and variance are and , re-
spectively

(25)

Note that when using DeMoivre-Laplace Approximation
(DLA), terms in (25) are normalized so that the sum of the pmf
values is one.

4) Total Variation Distance: To measure the accuracy of the
approximations, we adopt the total variation distance (TVD)
[16] to quantify the difference of two distributions. Let and

be two integer-valued RVs, which follow two distributions
with pmfs and , respectively. The TVD between these two
distributions is defined as

(26)

where is any subset of the set of nonnegative integers and it
is well known that [17]

(27)

Since by definition, the TVD is the maximum absolute differ-
ence of probability mass on any subset between two distri-
butions, and is equivalent to a complementary cumulative
distribution function (see (17)), the absolute difference between
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TABLE I
COMPARISON OF DIFFERENT APPROXIMATION METHODS

Fig. 2. The ROC curves obtained by simulation, fourfold integration, Binomial
I, Binomial II, and DLA approximations. n = 2; d = 1; b = 50;N =

10; P = 50, and � = 0:2.

Fig. 3. The TVD between the exact pmf of � jH , and its approximations
based on Binomial I and II, and DLA. P = 25. Solid line+ x-mark: Binomial
I, b = 20; solid line + star: Binomial I, b = 40; dashdot line + diamond:
DLA, b = 20; dashdot line + pentagram: DLA, b = 40; dashed line + square:
Binomial II, b = 20; dashed line + circle: Binomial II, b = 40.

the true and its approximated value is also bounded by the
TVD.

D. Experimental Results

In Fig. 2, the ROC curves corresponding to simulation,
fourfold integration, Binomial approximations, and DLA are
plotted. In the simulation, Monte Carlo runs have been
used. For different Monte Carlo runs, we use independent

target coordinates , and independent sensor coordinates
, for . Hence, a total of independent
pairs have been used in the simulation. It is clear that

the curves obtained by simulation, integration, and Binomial
I and II distributions are indistinguishable. There are discrep-
ancies between the true ROC curve and that corresponding to
DLA approximation. Note that is too small for DLA
to be a good approximation of a Binomial distribution.

To compare the accuracies of different approximations,
in Fig. 3, we show their TVDs relative to the true pmf of

, as a function of . It is clear that the accuracy of
Binomial I degrades rapidly as increases. As we know,
the variance of a Binomial I distribution, is
linear in , and is a quadratic function of ,
according to Proposition 1. As increases, their difference,

, increases, and the Binomial I
approximation becomes less accurate, due to the mismatch in
variance.

On the other hand, the Binomial II approximation has the
smallest TVD among the three approximations, because both its
mean and variance have been matched to those of . The
jumpy behavior of its TVD curves is due to the fact that can
only take an integer value and hence its variance is close but
not identical to the true variance of in most cases. As

increases, the accuracy of DLA improves and converges to
that of the Binomial II quickly. This is because as increases,

increases too, and the DLA becomes a more accurate
approximation of Binomial distribution.

Another observation is that when the size of the ROI is
large, the TVDs corresponding to all the approximations are
small. This can be explained as follows. When the ROI is large,
only within a small fraction of the ROI surrounding the target,
received signal strength is significantly larger than zero. As a
result, for most pairs, except those near the border of
the ROI, in (14) is almost a constant, independent of

, and . In such cases, (16) becomes

and Binomial distribution is a very good approximation to the
exact distribution of .

In summary, when is small, Binomial I approximation is
a good choice, considering its accuracy and its small amount
of computation involving only a single-fold integration. When

is large, however, the Binomial II and DLA approximations
are better choices, since they need only one fourfold integration,
compared with fourfold integrations required by the exact
evaluation of the pmf of . The accuracies of different
approximation methods, and their requirements for computation
load are summarized in Table I.
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IV. RANDOM NUMBER OF SENSORS AND NOISY CHANNELS

In a typical WSN, due to the limited energy and/or bandwidth
budget for each sensor node, increasing power and/or employing
powerful error correction codes may not always be feasible. Fur-
thermore, in a hostile environment, the power of transmitted
signal should be kept to a minimum to attain a low probability
of intercept/detection (LPI/LPD). As a result, the data trans-
mitted over the wireless channel between a sensor and the fusion
center may endure errors. We assume that the local decisions
are transmitted through binary symmetric channels (BSCs) [21]
to the fusion center. The BSCs have been used to model the
noisy channels in the context of distributed detection problems
by many researchers since this simple model effectively charac-
terizes the loss of information caused by nonideal channels. The
channels corresponding to different sensors are assumed i.i.d.,
with the same crossover probability

(28)

where is the th sensor’s decision received at the
fusion center, which may not be the same as , due to the non-
zero channel error rate. Note that as long as , it is very
easy to show that is a maximum likelihood estimator (MLE)
of . The statistic that the counting rule uses at the fusion center
becomes

(29)

As shown later, the nonideal channels only change the prob-
abilities of “1”s and “0”s received at the fusion center, and lead
to performance degradation. We keep using the same decision
fusion rule, the counting rule.

A. Binomial Distributed Random Number of Sensors

In many applications, the sensors are deployed randomly in
and around the ROI, and oftentimes some of them are out of the
communication range of the fusion center, malfunctioning or
out of battery. Therefore, at a particular time, the total number of
sensors that work properly in the ROI is a RV. Here we assume
that this RV follows a Binomial distribution. We assume that in a
network consisting of sensors, each sensor successfully sends
a binary local decision to the fusion center with a probability

. As a result, at a particular time, the number of sensors (N)
that can communicate with the fusion center successfully is a
Binomial RV

(30)

Given this assumption and the BSC communication channels,
we derive the distribution of , as summarized in
the following theorem.

Theorem 3: Under hypothesis , and conditioned on the
target’s coordinates and follows a Binomial distribu-
tion, namely

Binomial (31)

where

and has been defined in Theorem 1.
Proof: See Appendix III.

With Theorem 3, it is easy to show that

(32)

for . Similar to the proof of Theorem 3, we can
show that

(33)

Since the evaluation of (32) requires fourfold integrations,
once again we are interested in its approximations. Due to the
similarity between the pmf of and , we use tech-
niques that have been used in Section III-C, namely the Bino-
mial I and II approximations and DLA. These approximations
need to match the mean and/or variance of the , which
are provided without proof as follows:

Proposition 2: The mean and variance of are

(34)

and

(35)

where

(36)

and

(37)

To compare different approximation methods, in Fig. 4, we
show their TVDs relative to the exact pmf of , as a func-
tion of . It is clear that when the size of the sensor network
is small, both Binomial I and II approximations are very accu-
rate. When is large, however, the DLA approximation, which
matches the mean and variance of exactly, is a better
choice.

The accuracies of different approximation methods, and their
requirements for computation load are summarized in Table II.

B. Poisson Distributed Random Number of Sensors

1) Exact Performance: In addition to the case where the
number of sensors follows a Binomial distribution, we investi-
gate the case of Poisson random number of sensors. The Poisson
point process has been adopted widely to model the randomly
distributed sensors or wireless nodes [12], [22]. Here we assume
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TABLE II
COMPARISON OF DIFFERENT APPROXIMATION METHODS

Fig. 4. The TVD between the exact pmf of� jH , obtained through four-fold
integration, and its approximations based on Binomial I and II, and DLA. P =

50; b = 50; p = 0:9. Solid line + x-mark: Binomial I, p = 0:01; solid
line + star: Binomial I, p = 0:1; dashdot line + diamond: DLA, p = 0:01;
dashdot line + pentagram: DLA, p = 0:1; dashed line+ square: Binomial II,
p = 0:01; dashed line + circle: Binomial II, p = 0:1.

that the total number of sensors within a ROI is a Poisson
RV

(38)

where is the average number of sensors deployed in the ROI.
We denote the total number of detections received at the fusion
center as .

Given the above assumptions and notations, we derive the
distribution of , as summarized in the following
theorem.

Theorem 4: Under hypothesis , and conditioned on the
target’s two coordinates and follows a Poisson distri-
bution, namely:

(39)

where has been defined in Theorem 3.
Proof: See Appendix IV.

With Theorem 4, it is easy to show that

(40)

for . Note that in practice, to get the pmf of
, we only calculate a finite number of terms, which have

nonnegligible values.
Similar to the proof of Theorem 4, we can show that under

hypothesis follows a Poisson
distribution.

2) Poisson Approximation: As we can see, the evaluation
of (40) involves a fourfold integration. Since conditioned on

is a Poisson distribution, here we try to ap-
proximate the pmf of with a Poisson distribution, whose
mean matches that of . In other words, we use a Poisson

to approximate the pmf of , in
which has been defined in (20).

3) Gaussian Sample Approximation: Again, the Poisson
approximation only matches the first moment, or the mean of

. Similar to the proof of Proposition 1, we derive the
variance of . We give it without proof in the following
proposition.

Proposition 3: The variance of is

(41)

Once the mean and variance of are available,
we use the samples of a Gaussian distribution to approxi-
mate the pmf of , since Gaussian pdf is simple to
calculate, and its shape is completely characterized by its
first two moments. Now we use the samples of a Gaussian

pdf to approximate the
pmf of

(42)

Again, terms in (42) are normalized so that the sum of the pmf
values is one.

4) Experimental Results: In Fig. 5, for two different channel
error rates, we compare the ROC curves obtained through
simulation, fourfold integrations, Poisson approximation, and
Gaussian sample approximation. In the simulation, Monte
Carlo runs have been used. In each Monte Carlo run, we use
independent target coordinates , an independent number
of sensors , and independent sensor coordinates ,
for . As a result, a total of independent

pairs have been used in the simulation. As expected,
the ROC curve corresponding to a smaller channel error rate

is above that corresponding to a larger channel
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TABLE III
COMPARISON OF DIFFERENT APPROXIMATION METHODS

Fig. 5. The ROC curves obtained by simulation, four-fold integration, Poisson
approximation, and Gaussian sample approximation. n = 2; d = 1; b =

50; � = 10; P = 50, and � = 0:2. Solid line: p = 0:01; dashed line:
p = 0:4. x-mark: simulation; circle: integration; square: Poisson approxima-
tion; diamond: Gaussian sample approximation.

Fig. 6. The ROC curves obtained by simulation, fourfold integration, Poisson
approximation, and Gaussian sample approximation. n = 2; d = 1; b =

50; P = 50, and � = 0:2. Solid line: Poisson approximation; dashed line:
Gaussian sample approximation. Triangle: p = 0:001; star: p = 0:01; circle:
p = 0:1.

error rate , meaning that a system with a smaller
channel error has a superior detection performance. It is clear
that the curves obtained by simulation, integration, and Poisson
approximation are indistinguishable. Note that in this particular
case, the Gaussian sample approximation is not very accurate,
and its corresponding ROC curve is significantly different from
the true ROC curve in both cases of and .

To compare the accuracies of different approximations, in
Fig. 6, we show their TVDs relative to the true pmf of ,
as a function of . It is clear that the Poisson approximation
becomes less accurate as increases. Another observation
is that the larger is, the better the Poisson approximation
is. These phenomena can be explained as follows. According
to Proposition 3, the difference between the variance of a
Poisson RV and that of is

, which is an increasing func-
tion of , and a decreasing function of . A large or a small

leads to large mismatch in variance, making the Poisson
distribution a less accurate approximation.

As we can see, as increases, the accuracy of the Gaussian
sample approximation improves, and it is not sensitive to the
variation of .

In summary, for a small , the Poisson approximation is
a very good choice, and it needs only a single-fold integra-
tion. For a large , the Gaussian sample approximation has
better accuracy, and it requires only a fourfold integration,
which is modest compared with the computation needed
for the exact evaluation of the pmf of . When is
large, and the approximation using samples of the Gaussian

pdf is accurate, the
number of non-negligible terms of the pmf of can be
deemed approximately as

which is in the order of , considering that is a
quadratic function of . The accuracies of different approxima-
tion methods, and the computation load they require are sum-
marized in Table III.

V. DECISION THRESHOLD AT LOCAL SENSORS

Since the local sensor level threshold affects the system
level and , it should be designed carefully to achieve
a better system level detection performance. However, the
calculation of ROC curves involves fourfold integrations,
making ROC based optimization procedure computationally
prohibitive. Therefore, We resort to the deflection coefficient
[23], which is especially useful when the statistical properties
of the signal and noise are limited to moments up to a given
order. The deflection coefficient is defined as

(43)

where is the test statistic used in a hypothesis testing problem.
When , this is in essence the SNR
of the detection statistic. The use of deflection criterion leads to
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Fig. 7. Top figure: the optimal � as a function of P ; n = 2, d = 1; b =

50; p = 0:01; middle figure: � as a function of b; n = 2; d = 1; P = 50,
and p = 0:01; bottom figure: � as a function of p ; n = 2; d = 1; P =

50; b = 50.

the optimum LR receiver in many cases of practical importance
[23]. In the case of Poisson random number of sensors and noisy
channels, the deflection coefficient of is

(44)

Note that the evaluation of the above formula requires only a
single-fold integration. We design a sensor-level threshold that
maximizes .

We investigate the relationship between the optimal threshold
and system parameters such as , the size of the ROI , and

wireless channels’ error rate , and show the results in Fig. 7.
As we can see, is a monotonically increasing function of .
The intuition behind this phenomenon is that for a stronger , a
higher can reduce the sensor level false alarm rate , while at
the same time it can still maintain a relatively high sensor level
probability of detection. is a monotonically decreasing func-
tion of . This is because for a large ROI, the received signal is
weak at a larger fraction of sensors, and it is better to use a lower
threshold to improve the chance of detecting the target. Also,
is a monotonically decreasing function of . The reason lies
in the fact that for more noisy channels, more detections (“1”s)
are likely to be erroneously transmitted to the fusion center. A
lower threshold is needed to generate a larger number of detec-
tions to achieve the same detection performance as that in an
ideal-channel case.

An example is provided to illustrate the benefit of the op-
timal threshold. The system-level ROC curves for different are
plotted in Fig. 8. As we can see, the ROC curve corresponding
to the optimal threshold is above those for other
thresholds, meaning that provides the best system level per-
formance.

Fig. 8. The ROC curves of a WSN with different sensor-level decision
threshold � , obtained by fourfold integration. n = 2; d = 1; b = 50; P =

50; � = 20; p = 0:01.

VI. CONCLUSIONS AND DISCUSSION

For a WSN with randomly deployed sensors, we have pro-
posed a decision fusion rule that uses the total number of detec-
tions reported by local sensors as a test statistic. It is assumed
that the received signal power is inversely proportional to the
distance from the target. For both the case of a known number
of sensors and perfect channels and the case of a random number
of sensors and noisy channels, we have derived the system-
level probabilities of detection and false alarm. The evaluation
of the system-level probability of detection involves computa-
tionally intensive fourfold integrations. To reduce the computa-
tion burden, we have proposed several methods to approximate
the system level probability of detection. Their accuracies have
been compared in terms of the TVD. Our results show that for
a WSN with a small number of sensors, or a small expected
number of sensors, the approximation methods that match the
mean of the true test statistic are good choices; for a WSN with
a large number of sensors, or a large expected number of sen-
sors, the approximation methods that match both the mean and
variance of the true test statistic are good choices.

We have shown that the threshold at local sensors is a very im-
portant parameter to design, which can affect the system level
performance significantly. Here, we have proposed to find the
threshold by maximizing the system-level deflection coefficient.
The optimal thresholds are calculated numerically for various
system parameters. If the signal strength is high, the size
of ROI is small, and the channel error rate is small, a
higher local sensor level threshold should be chosen; other-
wise, a lower local sensor level threshold should be employed
to achieve a better performance.

APPENDIX I
PROOF OF THEOREM 1

Starting from the assumption that the noises at local sensors
are i.i.d. and the locations of local sensors are i.i.d., it is easy to
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show that given and under hypothesis s are i.i.d.
RVs. Being a Bernoulli RV, has the following pmf

(45)

Accordingly, given , the moment generating function
(MGF) of is

(46)

where

(47)

Note that in (46), the outer expectation is taken over and
only. Because given s are i.i.d., from (10), we have

(48)

which is nothing but the MGF of a Binomial RV.

APPENDIX II
PROOF OF PROPOSITION 1

From Theorem 1, it can be readily shown that

(49)

According to a characteristic of the conditional variance, we
have

(50)

Since

(51)

we have

(52)

Similarly

(53)

Taking expectation with respect to on both sides of the
above inequality, we finally have

(54)

With (52), (54), and (50), it is easy to show that

(55)

APPENDIX III
PROOF OF THEOREM 3

Since the noises at local sensors are i.i.d., the locations of
local sensors are i.i.d., and channels are i.i.d., it is easy to show
that given and under hypothesis s are i.i.d. RVs,
whose pmf is as follows:

(56)

Following a similar procedure of the proof of Theorem 1, we
can show that conditioned on and follows a Bi-
nomial distribution. Hence, the
corresponding MGF is

(57)

Taking expectation with respect to on both sides of the above
equation, we have

(58)

which is the MGF of a RV with a Binomial dis-
tribution. Note that we obtain the second equality in (58) ac-
cording to Binomial Theorem.

APPENDIX IV
PROOF OF THEOREM 4

Following a similar procedure of the proof of Theorem 3,
we can show that conditioned on and follows a
Binomial distribution. Hence, the
corresponding MGF is

(59)
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Taking expectation with respect to on both sides of the above
equation, we have

(60)

which is the MGF of a RV with a Poisson distribu-
tion.
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